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N O N L I N E A R  D E V E L O P M E N T  OF T W O - D I M E N S I O N A L  H Y D R O E L A S T I C  

I N S T A B I L I T Y  I N  A T U R B U L E N T  B O U N D A R Y  LAYER O N  A N  E L A S T I C  C O A T I N G  

V. P. R e u t o v  a n d  G. V.  R y b u s h k i n a  UDC 532.526; 537.86.187 

Nonlinear evolution of hydroelastic instability arising in the flow past a coating of a rubber-type 
material by a turbulent boundar~y layer of an incompressible fluid is studied. A nonlinear dis- 
persion equation for two-dimensional, quasi-monochrwnatic, low-amplitude waves is derived. 
The Prandtl equations for the mean (over the waviness period) boundarg-layer flow are solved in 
the approximation of local similarity and by direct numerical integration. Evolution of unstable 
waves in time is studied on the basis of the Landau equation, which is derived separately for the 
instability of fast waves (flutter) and the quasi-static instability (divergence). The calculation 
results are compared with available experimental data. 

The s tudy of wave generation on elastic coatings in inconipressible fluid flows is of interest for using 
these coatings to decrease the drag and suppress acoustic noise and vibrations [1, 2]. Up to now, the main 
attention was focused on the linear theory of instability arising upon interaction of elastic coatings of various 
types with a laminar  flow (see the review of literature in [3]). The problem of excitation of finit~amplitude 
waves was also solved for a lamfimr flow regime [4, 5]. 

Generat ion of wave, s on elastic coatings in a turbulent boundary layer (TBL) was experimentally studied 
in some papers [1, 6]. Two 1)~usie regimes of generation of hydroeb~stic waves were ~bund: traveling-wave 
flutter (T~VF) and wave divergence. Reutov and Rybushkina [7] used an algebraic model of vortex viscosity 
to s tudy linear hydroelast ic instability in the TBL, and equations for two-(timensional wave perturbations in 
the boundary layer were written in curvilinear coordinates. The calculated vahles of the critical velocity of 
T W F  and wave-divergence origimttion are in good agreement with the experimental data  of [1, 6]. Reutov 
[8] proposed a immerical model, which allows one to calculate the nonlinear response of the TBL to a wavy 
flexure of the underlying surface. As in [9], where the interaction of waves on water with an atmospheric TBL 
was examined, Reutov  [8] used a quasi-linear approximation, where the basic nonlinear effects are related to 
deformation of the profile of the mean (over the waviness period) flow. 

In tile present  paper,  which should be considered as a continuation of [7, 8], we study the nonlinear 
stage of evolution of hydroelastic instability in the TBL on a single-layer coating. The main small parameter 
of the problem is tile slope of the wavy surface ka << 1 (k and a are the wavenumber and the amplitude of 
surface flexure). Another  limitation of the proposed theory is the fact that  the surface flexure has the form 

of a two-dinmnsional quasi-monochromatic wave. 
In the above-cited experiments [1, 6]~ the flow velocity could exceed the critical value by several times. 

Waves with large slopes of the surNce were observed. The approach proposed in the i)resent paper allows 
one to consider tile region of small and moderately small supercritical vahles at which rather weak waves 
are generated. V~e note  that  generation of divergent waves with huge slopes of the sm'face were immerically 
simulated by Lucey and Carpenter [10]. However, the potential-flow approximation wa,s used in the latter 
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work, which does not take into account the TBL effect. 
1. Nonlinear Dispersion Equation for Small-Amplitude Hydroelastic Waves. Following [8], 

we describe tile T B L  flow using a semi-empirical ttvpothesis of turbulent viscosity ~md formulate tim equations 
of motion in curvilinear coordinates {, r/, in which one of the coordinate axes coincides with the profile of the 
wax T surface. Tim x and y axes of the Cartesian coordinate system are directed along the flow and normal 
to the undisturbed surface. The spatial evolution of the T B L  above the wavy surface beginning in the cross 
section .'1" = x0 is schematically shown in Fig. 1 [5(:r) is the T B L  thickness, the dashed curve shows its behavior 
in tile absence of waviness, Ul (g) is the profile of the longitudinal velocity in the TBL over a smooth surface, 
U is the f re~s t ream velocity, and ~ and q are the coordinate lines of the system of orthogonal curvilinear 
coordinates over a waviness period]. Separat ion of the flow into the mean and fluctuating components is 
performed along the horizontal  coordinate lines (q = const). The mean flow is assumed to be quasi-parallel, 
i.e.. the scale of expansion of the TBL L = 5/(d(~/dx) is much greater than the TBL thickness 5 and the 
waviness scale (L/~ >> 1 and kL >> 1). \Vavy deflections with a small slope (ka << 1) are considered. An 
elastic ('eating made of an incompressible rubber-type material,  which is characterized by the density p., and 
shear modulus G, tm.s a thickness d. The  velocity of propagation of transverse waves in the coating material 

is ct = V/--~ps. 
Tile effect of surface shear stresses ignored [1], determination of the TBL response to a wa~7 flexure of 

the surface w(x, t) reduces to determinat ion of surface-pressure perturbations p(x, t) generated by this flexure 
(Fig. 1). The  hydrodynamic  aspect of the problem is considered in more detail in Sec. 2. At this stage of 
constructing the dispersion equation for hydroela.stic waves, it suffices to take into account the fact that the 
nonlinear response of the TBL can be found in the quasi-linear apl)roxinmtion. The equations and boundary 
conditions for ttm f luctuat ing (wavy) component  of the T B L  flow are tim santo as in the liImar problem, 
but the mean-flow characteristics are found taking into account the influence of wave stresses, which are 
quadratic in amplitude.  The  conditions of applicability of the quasi-linear approximation were discussed in 
[8, 9]. Another  impor tan t  feature of the nonlinear response is that it can be deternfined without taking into 

account tim TBL expansion history. 
The  main te rm of  expansion in ka << 1 for surface displacement and surface-pressure perturbations is 

rei)rcsented in the form 

(u,, p) = (1/2)(,~,.p) exp (,:k(x - of)) + c.c.. (1) 

wh,~re c is the phase velocity and Iff,! = a is the flexure amplitude: the hat denotes the comI)lex aml)litude 
of the wave pe r tu rba t ion  (c.c. is the comt)lex conjugate expression). Tim TBL response to tim wavy flexure 
of the surfiwe is character ized by tile complex elasticity of the flow KA(c, k) = [)/d,. In tile quasi-linear 
approximation, the elasticity is a flmction of (ka) 2 and may be considered as a virtual el~tsticity [7]. For small 

ka, we obtain tim dimensionless ela.sticity of the flow 

y _  KA 
po~:V---- ~ ~- Yo + (~:a)2Y~, (2) 
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where P0 is the fluid density. The main term of expansion in the right part  of (2) Y0 coincides with tile linear 
elasticity of the flow calculated in [7]; the coefficient Yl characterizes the nonlinear properties of the TBL 
resI)onse. According to [8], the condition of applicability of tile quasi-linear apl)roximation is the presence 
of a numerically large coefficient a t  (]i:a) 2 in Eq. (2): [Y~l/lYol >> L where the characteristic values of the 

corresponding quantities are taken as IY, I and I~)l. 
The  deformation of the surface of the elastic coating under  an external action may be characterized by 

the complex elasticity K0 = -/)/tb. Reutov and Rybushkina [7] proposed a membrane  model of the response 
of a single-layer coating, in which the dimensionless elasticity/~'0 = Kod/(psc2t) is represented in the form 

K'o ~ "fim'2"(~ - 6 "2) - i'ytbo(~e, (3) 

where a = kd is the dimensionless wavenumber, ~ = c/ct is the  dimensionless phase velocity, m, co, and b0 are 
functions of a,  which have the meaning of the parameters of the effective membrane,  and /̂t is the parameter 
of losses in the coating (the coefficient b0 is independent of 3't and is related to the coefficient b introduced in 
[7] by the relation b0 = 1)/3't)- 

Determination of the nonlinear response of the elastic layer is a labor-consuming problem in which it is 
necessary to take into account the nonlinearity of the strain tensor and the second harmonic of elastic fields. 
Since tim nonlinearity of the strain tensor is characterized by the parameter  ka << 1, we m~\y assume that 
it l)htys a secondary role a~s compared to the "large" (in the  above-mentioned meaning) nonlinearity of the 
TBL response. Therefore, we confine ourselves to evaluating the deformational nonlinearity of the coating, 
whMt cottfirms these considerations. 

Vfe replace tim coating by a plate at tached to a dis tr ibuted spring base [3]. Using the thin-plate 
apl)roximation, we can write the K~irm~in equation fbr a periodic flexure of such a model coating (see, e.g.. 
[10]): 

x+A 

/ ] - + B, , , : ,=  + ( w ' ) 2  d: '"  + b.,,,, = - , .  (4) 

.E 

Here m, = p.dl is the surface density of the plate, T is the tension coeffMent, B = Gd3/[6(1 -I t)]  is the flexural 
rigidity (It ~ 0.5 is Poisson's ratio), KE is the elastMty of the spring base, b is the absorption factor, and 
,\ = 2,-r/k is the flexure period. 

Substituting the surface pressure (1) into (4) and defining w ~s the expansion in powers of ka << 1, we 
can easily find the main nonlinear term of this expansion and verify that  it does not depend on the presence 
of the second harmonic in the expression for p if it is of order  O[(ka)2]. In this case, the expression for the 
nonlinear elasticity of the plate (4), with accuracy to terms of order (ka) 2, is wri t ten  in a form sinfilar to (2): 

/~'NL = --/)/tb ~ /~'0 -Jr- lr~'l (]i'a) 2. (5) 

Here/~'t = (kd)2/[2(1 - #)] is the nonlinearity factor. The  term/~'0 in expansion (5) is replaced t)y expres- 
sion (3). 

Using the definitions of I/" and/~',\~L, we can represent the nonlinear dispersion relation for hydroeb~stic 
waves in the [brm 

K'0(C, (t) q- ('~qV2}b(e, ct; V) q- [K'I (c, ct) q- o~qV2"~q(? ;. (~; V)] (lea,) 2 = 0, (6) 

where q = Po/P.~ is the ratio of densities of th(; moving fluid and elastic layer and V = U/ct is the (timensionless 
flow velocity. Equation (6) is the generalization of the dispersion relation of the linear theory [7] to the case 
of weakly nonlinear hydroelastic waves. 

2. Calculation of  Nonlinear Complex  Elast icity of  the Boundary  Layer. To calculate the 
nonlinear elasticity of the flow Y we use the results of [8]. Wi th in  the framework of approximations described 
in Sec. 1, Reutov [8] obtained a system of Prandt l  equations for the stream function and vorticity of the mean 
(over the waviness period) TBL flow, which contains wave stresses of second order  in the small slope of the 
surface ka << 1. The quasi-linear system of equations for complex profiles of the first harmonics of the stream 
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function and vorticity coincides with that derived in [9] for a parallel flow in the atmospheric TBL. To solve 
the Prandtl  equations, Reutov [8] proposed to use a two-scale approach (approximation of "local similarity"), 
which leads to a boundary-wflue problem in ordinary derivatives, which determines the local structure of 
the TBL in an arbitrary cross section along x. The mean flow in the TBL is characterized by the dynamic 
velocity u, ,  displacement thickness 5", local Reynolds number Re = U5"/1~o (re is the kinematic molecular 
viscosity of the fluid), arid (limensionless pressure gradient /31 = (5*/(poU~'))dP/dx (P is tim external-flow 

pressure). 
The problem of hydroelastic instat)ility is usually posed tbr small-scale waviness (kS >> 1). The 

calculations of [8] show that  the action of such waviness on the mean flow is mainly localized in the near-wall 
region (q << 5). Therefore, the self-similar mean flow in the external  region of the T B L  (wake region) remains 
self-similar with origination of waviness. The  mean flow in the near-wall region is locally parallel and is 
descril)ed by the equations for a 1)aralM flow obtained by Reutov and Troits l~ya [9]. This agrees with the 
classical notions that the l)resence of roughness change, s the constant  in the logarithmic law of the wall, which 

finally leads to a change in the drag coeffMent. 
The numerical procedure for solving the boundary-wdue problem proposed in [8] alh)ws one. from the 

known "input" parameters Re, /31, kS*, and c/U, to determine the "output" parameters  ~L./U, dS*/dx, the 
drag coefficient, and Y. h'l accordance with the TBL theory on a fiat surface [l l] ,  a self-similar wake flow 
exists only if there are imga t i~  pressure gradients whose absolute values are not too large: /31 > / - 0 . 5 ( u . / U )  2. 

The approach implemented in [8] allows the calculation of the nonlinear response of the TBL for a fixed 
wtlue of R,e. However, when the waviness is introduced, the values of 5" and Re do not remain constant for 
x = c o n s t  and depend on the history of TBL expansion (Fig. 1). The  prol)lem of the effect of the increment 
5* on the vahm of Y is also important because the amplitude of waviness under actual  conditions may vary 

along z. 
To estimate the effect of the im'rement 5*, we performed a selective direct solution of the complete 

system of Prandtl  equations in partial derivatives. The transit ion to normalized variables was performed in 
the stone way as in [8], but  the deriw~tives with respect to x were retained in the equations. The solution 
was found by the method of lines [11]. The scheme of discretization ahmg x was borrowed from [12]. The, 
boundary-value problem in ordinary derivatives arising at each step along x was solved by an iterative method: 
however, in contrast to [12], the method of differential sweeping was used, which allows a significant reduction 

of the step of discretization along :r. 
Figure 2 shows the behavior of tlm exl)ansion coefficients of the flow elasticity (2) }}) = }~i~,. + iYoi and 

1"1 = YI,. +iY'li, which were calculated within the framework of the h)cal approach and using a direct numerical 
solution of the Prandtl  equations [the solid curves refer to the direct solution of the Prandt l  equations ['or the 
mean flow for Re(x0) = 2500 and the dashed curves show the calculation within the framework of the local 
theory; c/U = 0 and kS* (x0) = 0.67]. The problem in partial derivatives was solved under the condition that 
a TBL With a self-similar wake region comes from a flat surface onto the waviness: in the cross section x = x0 
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shown as an example  in Fig. 2. we have Re = 2500, u , /U  = 0.0418, 5/6" - 6.35, and d6*/d:r = 0.0025. Tile 
local Reynolds number  increases downstream almost linearly: 

Re (x) - Re (x0) ~- Itt(x - xo)/5*(xo). (7) 

Here lit ~ 5.43. T h e  maximum value of x - x0 for tile Re interval shown in Fig. 2 is approximately 405(x0), 
which corresponds to the length of tim elastic insert in the experiments [1, 6]. The TBL thickness increases 

by a factor of 1.5 over this interval. 
As is shown in Fig. 2, the imaginary parts of the nonlinear coefficient Y, obtained using the local 

approach and the direct solution of the Prandtl  equations are ahnost identical. The reason is tha t  Y,i is 
mainly determined by the velocity profile of the locally parallel mean flow in the buffer region of the TBL. 
The  real part  of Yl depends to a larger extent oa the external flow. Nevertheless, at distances x - x o  ~ 15 5(x0), 
the cociticieut Yb. calculated by the direct numerical solution is also close to the vahm obtained within the 
framework of tile local theory. Actually l)erfornwd calculations confirm the hypothesis al)out tile weak effect 
of the incremenl~s 5* on the component of Y,. that is qua(lratic with respect to ka. Within the framework of 
the local theory, this result can be explained by the weak dependence of 1~. on the Reynolds number Re. The 
linear elasticity Y0 is determined in tim same way by direct integTation of the Prandtl  equations and using 
the local theory. T h e  da t a in  Fig. 2 refer to slow (divergent) waves with typical phase velocities c <~ 0.05 U 
[6]. Similar results  were obtained for fast waves with phase velocities c ~ (0.3-0.4)U [1]. 

Thus, tim second-order terms of expansion of the flow elmsticity over the slope of the surface, which were 
ol)tained within the  framework of tile local approach, differ insignificantly from the actual values: theretbre, 
the main calculations of E) and Yl were performed using the local apt)roach. It was found tha t  Y0 and 
Y1 depend weakly on the introduction of the negative pressure gradient 3l < 0 typical of experiments  in 
hydrochammls. Such a dependence becomes significant only for fll close to tim limiting vahm given above',. 

The  results presented below refer to the case/31 = 0. 
For the linear part  of the e l~t ic i ty  Y0, Reutov and Rybushkina [7] proposed a quasi-potential approx- 

imation of tile form 

~b ~ - - + 5 ~ ,  (8)  

where .f < 1 is the I)arameter of reduction of static elasticity of the potential flow. Analyti('al al)t)roximations 
of the del)en(lence f on kS* and Re and tile calculation results for the (lissipative component of elasticity 5}~ 

ar(" also presented in [7]. 
Figure 3a and b shows the calculated data for the dependence of the imaginary and real par ts  of 

the nonlinear parameter  Yt on tile dimensionless phase velocity of disturbances for Re = 3000 (curves 1 3 
correspond to kS* = 1, 3, and 6). It  is seen that nonlinearity increases the real part  of flow elasticity (Y1,. > 0 
for rather small c) and decreases the positive imaginary I)art of elasticity determining the energy income from 

the TBL to the wavy surface (Yli < 0 for Y0i > 0). 
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3. N o n l i n e a r  S t a b i l i z a t i o n  o f  Ins t ab i l i ty .  We study the generation of quasi-monochromatic, finite- 
ampli tude waw~s on the basis of tim Landau evolution equation, which allows one to describe the nonlinear 

st,~:-e of development of weak instabilities. 
Using relations (3) and (8), we present the nonlinear dispersion equation (6) in the following form: 

D(9.. a; V) - a2[/~'l(t2, (~) + (~q172Yl (~, (~; I / ' ) ]A  2 = 0, 

(9) 
D = rh(ft 2 - a2~. 2) + q (i2 - J'Va)"- + iTtbo~ - c~qV25Yo. 

Here ft = a5 is tile dimensionless frequency and A = a/d  is the dimensionless amplitude of tile wave. As in 
the linear theory [7], Eq. (9) contains implicitly two dimensionless paraineters, Ret = ctd*/uo and d/d*. 

Theor:q of Small  Supercriticality. Hydroeb~stic instability appears wtmn the flow velocity V is greater  

t han  the critical value Vc. ~Vaves with frequency 9~s and wavenumber ~,: are excited in the flow-coating 
system. The calculations of [7] show that  the dist)ersion equation of the linear problem, which is obta ined 
from (9) ['or A = describes the transition from tile T W F  to w a ~  divergence with increasing losses in 
the coating 7t. X' ,btain the Landau equation within tile framework of the asymptotic theory; which is 

constructed in terms of tile small parameter  .~ = (V - I/c)/Vc << 1. 
We introduce the dimensionless coordinate xt = x / d  and time tl = eft~d, multiply the right and left 

sides of Eq. (9) by w(x l ,  t l ) ,  pass from Ft to tile spectral operator  ~ = id /dt l ,  and introduce 5(~ = (~ - Ftc. 
~Ve assume that  D ( ~ ,  r~; V) = Dr + iDi in (9) an(t exI)and D,. and Di in tile vicinity of tile critical point  in 
small 5~ ,,~ ~ and V - Vc ~ ~. Assunfing that  A = O(sl/2), we seek the solution of the resultant equat ion in 

the form of a series in powers of ~ with the main part of the form 

u,(x~,t~) = (i/2)d,(t~)exp(ia~:r~ - iFt~t~) + c.c. (10) 

From the condition of l)oundedness of tile term of order e in tile expansion of w, we obtain tile Landau  

equat ion for tile complex amt)litude '&. 

for A: 

Using stan(lard transformations, we, pass to tim Landau equat ion 

dA ()q AaA2)A ' (11) 
dt I 

2 t 2 " .  t 
Aa = c~ 2 (/~'l + a q V  Yl,.)Di~ - aqV  Yt ,D m ~ - - - ' ~ l ' ~  

( ,m)" + (Di~)- 

where the coefficients have the form 
! ! I ! 

D " v D i ~  - D"f~Div K,: c' 
1 ~ 1 - - - - ~  (D, ) 2 7 ~  (12) 

(tile primes denote the derivatives with respect to V and fl, and tim subscript c indicates that tile expression 

is calculated for a = ac and l~ = 12e). 
The  nonlinear coefficient Aa in (11) was calculated for different ~/t- Tile parameters o'f tile critical waves 

from [7, Fig. 8] were used. Tim fimction Aa(Tt) has a "plateau" for small ~/t, a small increase for "Yt "" 0.5, and 
tends monotonically to zero as 7t -+ oc. The calculations show that  the nonlinearity of the coating elasticity 
/~*l makes a small contr ibut ion to Aa as comt)ared to twdrodynamic nonlinearity. An important result of the 
calculations performed is that Aa has a positive value within tile entire range of 7t. Thus, a miht reginm of 
exci tat ion is observed within the limits of applicability of the quasi-linear theory 1)oth for fast waves (flutter) 

and for slow waves (divergence). A steady geimration of a traveling wave with anq)litude 

A, = v /E /Aa  (13) 

is establishe(l. The  theory  of small SUl)ercriticality is applicable h)r a small width of the wavmmmber- 
instabili ty band ]a - &e] << a o  The ami)litudes of steady waves (13) are sigifificantly lower than those 
actual ly  observed in experiments. To describe more intense waves, we have to reject tile expansion in tile 

small supercritical values of s. 
Wave Divergence on a Viscoelastic Coating. Hydrodynamic instability of slow waves is observed on 

viscoelastic coatings, which are characterized by higtl losses: "Yt = 1-100 and 7tb0 = 6-600 [7]. This allows 

642 



A . ,  t 

0 . 4  

0.2 

0 ce 

Fig. 4 

us to derive an evolution equation using asymptotic  expansions in the snmll parameter ~0 = 1/(Ttbo) << 1, as 
was done in [7] for finding tile dispersion branches of the linear problem. 

We divide the dispersion equat ion (9) by 7tbo, multiply its right amt left sides by w ( x l , t t ) ,  and make 
the substitution Q --~ Q. We seek the solution in tile form of expansion in tile small parameter ~r with tile 
main part  ill the fornl 

w(xl ,  t l )  = (1 /2 )d , ( t l )  exp (i(~aq) + c.e. (14) 

In this case. the wave propagation is described by a slow change in the complex amplitude &, mid the 
expansion of the coefficients of tile dispersion equation is performed in terms of (] ~ e0. From the condition 
of boundedness of the term of order e0 in the expansion of w, we obtain the evolution equation for tile 
conlplex amplitude ~b(tl), from which follows the Landau equation for A in the form of (11) but with different 

coefficients: 

' )  r '~ - - 2  
,\t = (~&~(qf-I " -- am, c0) fl=o" 

It is taken into account in (15) that  dY0,- ~ 0 fi=0" 

the ~brm 

,) 
,~a = ~oc/"(R~ + aqV-Y~,.)  (is) 

~ 2 = 0 "  

The expression for tile phase velocity of slow waves has 

5~UI, = X~ + X~A 2, (16) 

e o a - q V - Y l i  ~=o" where ~, = ~oqV'2(~Yoi ~2=0 a n d  ~3 : " " " We note that tile proI)osed system for deriving tile 

evolution equation is at)t)licable for an arbi t rary  nonlinearity of the TBL response, since in this case the 
nonlinearity should be small only because of the use of expansion (2). 

From tile expression for the coefficient Al, it follows tha t  the origin of instability at high losses in tile 
coating is related to tile fact that  the absolute vahte of tile real part  of flow elasticity is greater than the static 
elasticity of the coating. The nonlinear increment of flow elasticity and the nonlinear allowance for coating 
elasticity exert a stabilizing effect on this instability since Yl~ > 0 (Fig. 3b) and /~'l > 0. This instability 
is independent of the imaginary par t  of flow elasticity }~ determining tim energy flux from the TBL to tile 
wave [8]. Tile energy interpretation of the instability nlechanisnl Callnot be applied here. since tile main 
contribution to the dynamic response of the coating at high losses is nlade bv the dissipative conlponent of 
its elasticity [the term - iTtbo( t3  in (3)]. An increase in losses does not lead to disappearance of instability 
but  only slows down its develolnnent. This  instability may be characterized as rest)()llse-resistix'e [7 I. 

The critical flow velocity is found from tile condition Al = 0 and, in this ai)proximation, it is inde- 

pendent  of the losses ill the coating. Since Yl~ > 0 fi=0 (Fig. 3b), a steady wave with amplitude (13) is 

established for V > Vc. The calculation results for the ampli tude of steady waves versus their wavenumber 
are plotted in Fig. 4 (d = 0.32 cm, 5* = 0.45 cm, Ret = 350, and q = 1; curves 1-3 correspond to V = 7, 
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9, and 11). The calculations show tha t  the main  contr ibut ion to A,  is made by the nonlinear part  of T B L  

elasticity (the contribution of/~'I is small).  
The  parameters  of the TBL and the coating in Fig. 4 correspond to the est imates of [7] obtained for 

test conditions of [6], where tile exci ta t ion of divergent waves was studied. The  condition of small slopes 

of thv surface was fulfilled in [6] for two or three points at the initial section of experimental dependences 

of the u ~n,e ampli tude on the flow velocity. The  exper imenta l  points  1-3 in Fig. 4 were obtained using the 

depen(iem:es of rite wavelength and its ampl i tude  on the flow velocity, which are given in [6, Figs. 12 and 15] 

for a coating with a shear modulus G -- 5 N / m  2, and correspond to the same values of the dimensionless flow 

velocity V for which curves 1-3 were constructed.  
As is shown in Fig. 4, the wave ampl i tudes  observed in the  experiments are reached for moderately  

small supercrit ical wdues where the band  of instabili ty (which coincides with the excitation band) becomes 

wide. A comparison of the ttmory and exper inmnt  allows us to conclude that  the experimental points are 

located imar tile maxima of the dependences A .  (c~). Despite the  great  width of the excitation band, coherent 

waves with a clearly expressed period were observed in exper iments .  The appearance  of these waves may  

be explained by tile presence of tile processes of  nonlinear interact ion and by the competition of harmonics 
growing in the instability band, whose descript ion goes outside t im linfits of the Landau  equation (11). From 

the analysis of tim data  in Fig. 4, it follows tha t  a quasi-harmonic wax~ whose ampl i tude is close to nm,ximum 

in the instability band "survives" as a result  of  compet i t ion and  interaction of harmonics of the wave packet. 

For the family of curves 1-3 in Fig. 4, the critical pa r ame te r s  are ~ = 5.25 and a~ = 2.4 (A, --+ 0 
as V ---* V(~). As the flow velocity V increases, the m a x i m u m  of the im:rement is shifted toward increasing 

(~ (ampex = 2.6, 2.7. an(I 2.8 for V = 7. 9, and  11, respectively).  At the same tiiIm, in tim experinmnts of 

[6], the critical wavenunfl)er was actually determined as the wavenmnber  of the observed wave with the least 
ampl i tude (point 1 in Fig. 4). It  follows from the da ta  presented tha t  the value of this critical wavenumber is 

approximate ly  two times smaller than  c~c obta ined  in the linear t)roblem. This circumstance was also noted 
in [7] and could not be explained within the  f ramework of the linear tiwory. Thus,  a comparison of the theory 

and exper iment  allows one to solve the prob lem of "'sampling" the  disturt)ances relative to their wavenmnber. 
Nonlinear  Flut ter  on a Coating with Smal l  Losses. hi the case of small losses in the coating, the effects 

of dissipation and nonlinearity may be taken into account as small  perturbations.  The corresponding small 

pa ramete r  ~t << 1 for the .dispersion equat ion  (9) may be in t roduced in tim form of the ratio of the greatest  
quant i ty  among 7tb0e~:0, aqV2]SYol, ct21A'll A2, and c~aqV'21yllA 2 to tile value .n%c~2~o characteristic of D. 

The necessary condition for the existence of such a small p a r a m e t e r  is the smallness of losses in the coating 

(Ttb0 << 1). Assuming that  the small p a r a m e t e r  -~l exists, we will not i(lenti~- it explicitly in (9) for brevity. 

We denote the function D fbr 6Y0 = 0 and 7t = 0 as Do. The dispersion equation D0(12, a)  = 0 

determines two fanfities of waves, of the linear conse r~ t ive  problem:  

~  : ,  ] f~l,2 -- - -  q V  f + ((~'rh + q ) a m c  5 -- (~qg~ f 2 V  2 . (17) 
g~(t + q 

As is shown in [7], for a TBL over a coat ing with  small losses, the  least critical velocity of the flow is observed 

for the instability of fast waves lying on the branch f~l(o~). 
To obtain the evolution equation for the T W F ,  we in t roduce d~ = ~ -  f~0, where f~0 = ~ t ( a ) .  In this 

c~u~e, in (9) we have an expansion in te rms  of 5~ ~ et in the vicini ty of ~ = f~0- The  solution for w is sought 

in the form of an expansion in powers of  ~t with the main pa r t  of  the form 

w(:rl, t t )  = (1/2)d',(tl) exp (ic~x~ -- i~o t l )  + c.c. (18) 

As a result, we ol)tain the Landau equat ion fbr A in the form of (11) with tile coefficients 

A~ = "" " Don Q ~,,  " "' " (19) (aqV'O~oi - ~ftbo9.o)/ ' . = A3 = -o '~qt  2~ti/D,o~ ~=~,, 

where D~)~ = 2fi0(~fft + q /a )  - 2 q f V  is the  derivative of Do with  respect to 9.. The allowance for the 

phase velocity of conservative waves has the form of (16), where A~ = qV25y,./D'o~ ~=fi,, and ~:~ = a(/7[~ + 

aqV2Yt~) /D'o~ ~=~ " 
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}Ve can show that  tile sign of wave energy in tile conservative problem (17) coincides with tile sign of 

f~0D~.  Since we have D ~  > 0 and t'10 > 0 for fast waves, their  energy" is positive. It  fbllows from Eq. (19) 
for Al tha t  destabilization of fast waves is possible for Yoi > 0, i.e., in the presence of an energy flux to 

the wave from the inean TBL flow (Miles mechanisn 0. As is shown in [7], the sign of ]~bi becomes positive 
as the flow velocity increases. Since nonlineari ty exerts a stabilizing effect on this instability (A3 > 0 for 

}11 < 0; see Fig. 3a), tlmre mrises a s t eady  wave with ampl i tude  (13). Note tha t  the critical flow velocity and 
the parameters  of fast waves at tim threshold  of instability, which were found within tile framework of the 
approximate  equation (11) with coefficients (19), are (:lose to those obtained numerically in [7] in the case of 

small losses. 
Tile calculation results of the ampl i tude  of steady waves versus their wavenumber are shown in Fig. 5 

for d = 0.32 ('m, 5" = 0.41 cm. Ret = 1113, 7t = 0.014, and  q = 1 (curves 1-3 correspond to V = 2.8, 2.9. 
and 3.0). Origination of the T W F . o n  a coat ing in the T B L  was studied experimentally in [1]. In this case, in 

comparison of the theory and exi)eriment, because of a s t ronger  scatter of experimental  points for tile T W F ,  
we used snloothed del)eudences of the ampl i tude  and wavelength of the flow velocity, which were given in [1, 

Figs.13 and 14] for a coating with G = 74 N / m  2. Taking ttmse dependences into account, we constructed an 

averaged curve of experimeI~tal da ta  (dashed curve in Fig. 5). Points corresponding to V = 2.8, 2.9, and 3.0 
were placed on this curve (Fig. 5). T h e  pa rame te r  of losses 3't was chosen so that  the theoretical curve was 

ch)ser to the exl)erimental i)oint corresponding to tile least vahm of V. 
The  curve of experimental  da t a  in Fig. 5 is located near  tile maxium of the theoretical dependences 

A.(o~). In this case, we have $~: = 2.77 and  {*c = 3.6. The  wavenuml)er in the maximum of the increment of 
linear instability increases with increasing V (C~max = 3.6, 3.8, and 4.0 for V = 2.8, 2.9, and 3.0, respectively). 

As follows from these data,  the shift in t e rms  of tile wavenumber  between the maximum of tile increment 
and the experimental point  with the least  value of A. is insignificant in this case. Therefore, the critical 

wavenumber  for the T W F  measured in the  experiments agrees with the calculation within the framework of 
the linear theory [7]. Compar ing the theoret ical  and exper imenta l  data for the TWF,  we may assume that ,  

as in the case of slow waves, the nonlinear processes of compet i t ion  and interaction of the harmonics of the 
packet lead to the "'survival" of the harmonic  whose ampl i tude  is ('lose to max immn in the instability band. 

As is shown in Fig. 5. tim calculated ampl i tude  for the T B L  increases faster with increasing flow v('.Iocity. A 

i)ossible tea,son for this disagreement umy  be tim tmglect of  damping factors (fbr example, the effect of the 

second harmonic of the flexure). 
Note that the ampli tudes of s teady  waves can be found directly from the nonlinear dispersion equation 

(9). The  mnnerical solution of Eq. (9) relat ive to l] and A yields amplitude dependences that  are close to 
those presente(l in Figs. 4 and 5. The  t ransi t ion to the L a n d a u  equation (11) used above allowed us to seek 

the solution of tim nonlinear problem tak ing  into account the  known results of the linear theory and reveal 
the mechanisms of stabilization of hydroelast ic  instability. In  addition, the proposed scheme of (leriw~tion 

645 



of the Landau equation for coatings with small and large losses can be further extended to the case of a 
multiwave flexure of the surface (excitation of wave packets). 

Conclusions.  A nonlinear theory of generation of weak quasi-monochromatic waves on the surface 
of an elastic coating in a turbulent boundary layer of an incompressible fluM flow is devetoi)ed in this t)at)er. 
The nonlinear dispersion equation is: formulated in terins of the complex elasticity of the flow and the coating, 
which allows the maximum use of tiw results of solving the linear problem considered in the I)revious work 
of the authors [7]. It is shown that. f,r small slopes of the surface (ka << 1), the limitation of hydroelastic 
instability is determined by hydrodynamic nonlinearity arising as a result of deformation of the velocity profile 
of the mean (over the waviness period) flow in the boundary layer under the action of waviness. 

A comparison of the resultant weakly nonlinear theory with known experimental data allows us to 
conclude that the waves with the ma.xinmm possible amplitude in the instability band for a given flow 
velocity "survive." This offers an explanation to the fact that the critical wavenumber of divergent waves 
in the experiment is significantly (approximately by two times) smaller than its theoretical value obtained 
within the framework of the linear theory, whereas this difference for the TWF is small. 

At the same time, it remains unclear why waves with certain finite amplitudes were observed in 
experiments after the loss of stability (in fact, there is no region of very small supercriticality in the graphs). 
We also note that, in the case of wave divergence, the approxinmtion of the quasi-monochronmtic wave 
becomes rapidly inwfiid as the flow velocity increa.~es, since multiple resonant harmoifics of the t)rimary 
disturbance fall within the instability band. 

This work was supported bv the Russian Foundation for Fundamental Research (Grant Nos. 974)1- 
00183 and 96-15-96593). 
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