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NONLINEAR DEVELOPMENT OF TWO-DIMENSIONAL HYDROELASTIC
INSTABILITY IN A TURBULENT BOUNDARY LAYER ON AN ELASTIC COATING

V. P. Reutov and G. V. Rybushkina UDC 532.526: 537.86.187

Nonlinear evolution of hydroelastic instability arising in the flow past a coating of a rubber-type
material by a turbulent boundary layer of an incompressible fluid is studied. A nonlinear dis-
persion equation for two-dimensional, quasi-monochromatic. low-amplitude waves is derived.
The Prandtl equations for the mean (over the waviness period) boundary-layer flow are solved in
the approximation of local similarity and by direct numerical integration. Evolution of unstable
waves in time is studied on the basis of the Landau equation. which is derived separately for the
instability of fast waves (flutter) and the quasi-static instability (divergence). The calculation
results are compared with available experimental data.

The study of wave generation on elastic coatings in incompressible fluid flows is of interest for using
these coatings to decrease the drag and suppress acoustic noise and vibrations [1, 2]. Up to now, the main
attention was focused on the linear theory of instability arising upon interaction of elastic coatings of various
types with a laminar flow (see the review of literature in [3]). The problem of excitation of finite-amplitude
waves was also solved for a laminar low regime [4, 5].

Generation of waves on elastic coatings in a turbulent boundary layver (TBL) was experimentally studied
in some papers [1, 6]. Two basic regimes of generation of hydroelastic waves were found: traveling-wave
flutter (TWF) and wave divergence. Reutov and Rybushkina [7] used an algebraic model of vortex viscosity
to study linear hydroelastic instability in the TBL, and equations for two-dimensional wave perturbations in
the boundary layer were written in curvilinear coordinates. The calculated values of the critical velocity of
TWF and wave-divergence origination are in good agreement with the experimental data of [1, 6]. Reutov
[8] proposed a numerical model. which allows one to calculate the nonlinear response of the TBL to a wavy
flexure of the underlying surface. As in [9], where the interaction of waves on water with an atmospheric TBL
was examined, Reutov [8] used a quasi-linear approximation, where the basic nonlinear effects are related to
deformation of the profile of the mean (over the waviness period) flow.

In the present paper, which should be considered as a continuation of [7, 8], we study the nonlinear
stage of evolution of hydroelastic instability in the TBL on a single-layer coating. The main small parameter
of the problem is the slope of the wavy surface ka < 1 (k and a are the wavenumber and the amplitude of
surface flexure). Another limitation of the proposed theory is the fact that the surface flexure has the form
of a two-dimensional quasi-monochromatic wave.

In the above-cited experiments [1, 6], the flow velocity could exceed the critical value by several times.
Waves with large slopes of the surface were observed. The approach proposed in the present paper allows
one to consider the region of small and moderately small supercritical values at which rather weak waves
are generated. We note that generation of divergent waves with large slopes of the surface were numerically
simulated by Lucey and Carpenter [10]. However, the potential-flow approximation was used in the latter
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work, which does not take into account the TBL effect.

1. Nonlinear Dispersion Equation for Small-Amplitude Hydroelastic Waves. Following (8],
we describe the TBL flow using a semi-empirical hypothesis of turbulent viscosity and formulate the equations
of motion in curvilinear coordinates &, 7, in which one of the coordinate axes coincides with the profile of the
wavy surface. The z and y axes of the Cartesian coordinate system are directed along the flow and normal
to the undisturbed surface. The spatial evolution of the TBL above the wavy surface beginning in the cross
section a2 = xg is schematically shown in Fig. 1 [§(r) is the TBL thickness, the dashed curve shows its behavior
in the absence of waviness, U{y) is the profile of the longitudinal velocity in the TBL over a smooth surface,
U is the free-stream velocity, and ¢ and 5 are the coordinate lines of the system of orthogonal curvilinear
coordinates over a waviness period]. Separation of the flow into the mean and fluctuating components is
performed along the horizontal coordinate lines (7 = const). The mean flow is assumned to be quasi-parallel,
i.e.. the scale of expansion of the TBL L = §/(dd/dx) is much greater than the TBL thickness § and the
waviness scale (L/d 3> 1 and kL > 1). Wavy deflections with a small slope (ka < 1) are considered. An
elastic coating made of an incompressible rubber-type material. which is characterized by the density p, and
shear modulus G, has a thickness d. The velocity of propagation of transverse waves in the coating material
is op = G/ ps.

The effect of surface shear stresses ignored [1], determination of the TBL response to a wavy flexure of
the surface w(r, t) reduces to determination of surface-pressure perturbations p(z, t) generated by this Hexure
(Fig. 1). The hydrodynamic aspect of the problem is considered in more detail in Sec. 2. At this stage of
constructing the dispersion equation for hydroelastic waves, it suffices to take into account the fact that the
nonlinear response of the TBL can be found in the quasi-linear approximation. The equations and boundary
conditions for the fluctuating (wavy) component of the TBL flow are the same as in the linear problem,
but the mean-flow characteristics are found taking into account the influence of wave stresses, which are
quadratic in amplitude. The conditions of applicability of the quasi-linear approximation were discussed in
[8. 9]. Another important feature of the nonlinear response is that it can be determined without taking into
account the TBL expansion history.

The main term of expansion in ka < 1 for surface displacement and surface-pressure perturbations is
represented in the form

(w.p) = (1/2)(d. p) exp (ik(x — ct)) + c.c.. (1)

where ¢ is the phase velocity and | = a is the flexure amplitude: the hat denotes the complex amplitude
of the wave perturbation (c.c. is the complex conjugate expression). The TBL response to the wavy flexure
of the surface is characterized by the complex clasticity of the flow N (e, k) = p/d. In the quasi-linear
approximation, the elasticity is a function of (ka)? and may be considered as a virtual elasticity [7]. For small
ka, we obtain the dimensionless elasticity of the flow

K 9.
= mkg s = Yo + (ka)?Y1, (2)




where py is the fluid density. The main term of expansion in the right part of (2) Yy coincides with the linear
elasticity of the flow calculated in [7]; the coefficient Y characterizes the nonlinear properties of the TBL
response. According to [8], the condition of applicability of the quasi-linear approximation is the presence
of a numerically large coefficient at (ka)? in Eq. (2): |Y1]/|Yo] > 1, where the characteristic values of the
corresponding quantities are taken as |Y;| and |Yp|.

The deformation of the surface of the elastic coating under an external action may be characterized by
the complex elasticity Ao = —p/i. Reutov and Rybushkina [7] proposed a membrane model of the response
of a single-layer coating, in which the dimensionless elasticity Ko = RKod/(psc?) is represented in the form

Ro = ma?(c — &%) — ivhoad, (3)

where a = kd is the dimensionless wavenumber, ¢ = ¢/¢, is the dimensionless phase velocity, 1, &y, and by are
functions of «, which have the meaning of the parameters of the effective membrane, and +; is the parameter
of losses in the coating (the coefficient by is independent of v; and is related to the coefficient b introduced in
[7) by the relation by = b/7;).

Determination of the nonlinear response of the elastic layer is a labor-consuming problem in which it is
necessary to take into account the nonlinearity of the strain tensor and the second harmonic of elastic fields.
Since the nonlinearity of the strain tensor is characterized by the parameter ka <« 1, we may assume that
it plays a secondary role as compared to the “large” (in the above-mentioned meaning) nonlinearity of the
TBL response. Therefore, we confine ourselves to evaluating the deformational nonlinearity of the coating,
which confirms these considerations.

We replace the coating by a plate attached to a distributed spring base [3]. Using the thin-plate
approximation, we can write the Kdrman equation for a periodic flexure of such a model coating (see, e.g..
[10]):

. T+
mwy — Twy, + Bw,ppy + Npw — [:(;221\ / (uz,tf):2 d.'z"] Wyp + oy = —p. 4)
N £

Here m = pud is the surface density of the plate, T'is the tension coefficient, B = Gd®/[6(1 — )] is the flexural
rigidity (2 = 0.5 is Poisson’s ratio), Kg is the elasticity of the spring base, b is the absorption factor. and
A =2x/k is the flexure period.

Substituting the surface pressure (1) into (4) and defining w as the expansion in powers of ka < 1, we
can easily find the main nonlinear term of this expansion and verify that it does not depend on the presence
of the second harmonic in the expression for p if it is of order O[(ka)?]. In this case, the expression for the

nonlinear clasticity of the plate (4), with accuracy to terms of order (ka)?. is written in a form similar to (2):

Kny = —p/i = Ko + K| (ka)>. (5)
Here K| = (kd)*/[2(1 — )] is the nonlinearity factor. The term Ky in expansion (5) is replaced by expres-
sion (3).
Using the definitions of ¥ and K wvr, we can represent the nonlinear dispersion relation for hydroelastic
waves in the form

Ro(E, ) + aqV2Yy(E, a: V) + [K1 (8 @) + aqV?Y (6. oz V)] (ka)? = 0, (6)

where ¢ = pg/ps is the ratio of densities of the moving fluid and elastic layver and V' = U/¢; is the dimensionless
flow velocity. Equation (6) is the generalization of the dispersion relation of the linear theory [7] to the case
of weakly nonlinear hydroelastic waves.

2. Calculation of Nonlinear Complex Elasticity of the Boundary Layer. To calculate the
nonlinear elasticity of the low ¥ we use the results of [8]. Within the framework of approximations described
in Sec. 1, Reutov [8] obtained a system of Prandtl equations for the streamn function and vorticity of the mean
(over the waviness period) TBL flow, which contains wave stresses of second order in the small slope of the
surface ka < 1. The quasi-linear system of equations for complex profiles of the first harmonics of the stream
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function and vorticity coincides with that derived in [9] for a parallel flow in the atmospheric TBL. To solve
the Prandtl equations, Reutov [8] proposed to use a two-scale approach (approximation of “local similarity™),
which leads to a boundary-value problem in ordinary derivatives, which determines the local structure of
the TBL in an arbitrary cross section along z. The mean flow in the TBL is characterized by the dynamic
velocity ., displacement thickness ¢*, local Reynolds number Re = Ud* /1y (v is the kinematic molecular
viscosity of the fluid), and dimensionless pressure gradient 8y = (6*/(poU?))dP/dx (P is the external-flow
pressure).

The problem of hydroelastic instability is usually posed for small-scale waviness (kd > 1). The
calculations of [8] show that the action of such waviness on the mean flow is mainly localized in the near-wall
region (n < §). Therefore, the self-similar mean flow in the external region of the TBL (wake region) remains
self-similar with origination of waviness. The mean flow in the near-wall region is locally parallel and is
described by the equations for a parallel flow obtained by Reutov and Troitskaya [9]. This agrees with the
classical notions that the presence of roughness changes the constant in the logarithmic law of the wall, which
finally leads to a change in the drag coefficient.

The numerical procedure for solving the boundary-value problem proposed in [8] allows one. from the
known “input” parameters Re, 3, k6*, and ¢/U, to determine the “output™ parameters u,/U, d6*/dx, the
drag coefficient, and Y. In accordance with the TBL theory on a flat surface |1 1], a self-similar wake flow
exists only if there are negative pressure gradients whose absolute values are not too large: 3 = ~0.5(x./U)>.

The approach implemented in [8] allows the calculation of the nonlinear response of the TBL for a fixed
value of Re. However, when the waviness is introduced, the values of §* and Re do not remain constant for
z = const and depend on the history of TBL expansion (Fig. 1). The problem of the effect of the increment
3* on the value of Y is also important because the amplitude of waviness under actual conditions may vary
along .

To estimate the effect of the inerement 6%, we performed a selective direct solution of the complete
system of Prandtl equations in partial derivatives. The transition to normalized variables was performed in
the same way as in [8], but the derivatives with respect to x were retained in the equations. The solution
was found by the method of lines [11]. The scheme of discretization along x was borrowed from {12]. The
boundary-value problem in ordinary derivatives arising at each step along # was solved by an iterative method:
however, in contrast to [12], the method of differential sweeping was used. which allows a significant reduction
of the step of discretization along 7.

Figure 2 shows the behavior of the expansion coefficients of the flow elasticity (2) Yy = Yo, 4+ ¢Y; and
Y; = Y}, +iY};, which were calculated within the framework of the local approach and using a direct numerical
solution of the Prandtl equations [the solid curves refer to the direct solution of the Prandtl equations for the
mean flow for Re(zg) = 2500 and the dashed curves show the calculation within the framework of the local
theory; ¢/U = 0 and k&*(zo) = 0.67]. The problem in partial derivatives was solved under the condition that
a TBL with a self-similar wake region comes from a flat surface onto the waviness: in the cross section x = z
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shown as an example in Fig. 2. we have Re = 2500, u./U = 0.0418, §/6* = 6.35, and dé*/dz = 0.0025. The
local Reynolds number increases downstream almost linearly:

Re(z) — Re (xg) ~ p1(x — 20) /6™ (20). (7
Here y; = 5.43. The maximum value of 2 — xq for the Re interval shown in Fig. 2 is approximately 404(xo).
which corresponds to the length of the elastic insert in the experiments [1. 6]. The TBL thickness increases
by a factor of 1.5 over this interval.

As is shown in Fig. 2, the imaginary parts of the nonlinear coefficient Y obtained using the local
approach and the direct solution of the Prandtl equations are almost identical. The reason is that Yj; is
mainly determined by the velocity profile of the locally parallel mean flow in the buffer region of the TBL.
The real part of Y} depends to a larger extent on the external flow. Nevertheless, at distances x—z¢ ~ 15 (),
the cocthicient Yi, calculated by the direct numerical solution is also close to the value obtained within the
framework of the local theory. Actually performed calculations confirm the hypothesis about the weak effect
of the increments §* on the component of Y, that is quadratic with respect to ka. Within the framework of
the local theory, this result can be explained by the weak dependence of Y, on the Reynolds number Re. The
linear elasticity Yg is determined in the same way by direct integration of the Prandtl equations and using
the local theory. The data in Fig. 2 refer to slow (divergent) waves with tvpical phase velocities ¢ < 0.05U
[6]. Similar results were obtained for fast waves with phase velocities ¢ ~ (0.3-0.4)U [1].

Thus. the second-order terms of expansion of the flow elasticity over the slope of the surface, which were
obtained within the framework of the local approach, differ insignificantly from the actual values: therefore,
the main calculations of Yy and Y; were performed using the local approach. It was found that Yy and
Y: depend weakly on the introduction of the negative pressure gradient 3, < 0 typical of experiments in
hydrochannels. Such a dependence becomes significant only for 3 close to the limiting value given above.
The results presented below refer to the case 8y = 0.

For the linear part of the elasticity Yy, Reutov and Rybushkina {7] proposed a quasi-potential approx-
imation of the form

. ¢ 2 -

Yoz—(—ﬁ—f) + 6%, (8)
where f < 1 is the parameter of reduction of static elasticity of the potential flow. Analytical approximations
of the dependence f on ké* and Re and the calculation results for the dissipative component of elasticity dYg
are also presented in {7].

Figure 3a and b shows the calculated data for the dependence of the imaginary and real parts of
the nonlinear parameter Y, on the dimensionless phase velocity of disturbances for Re = 3000 (curves 1-3
correspond to k6* = 1, 3, and 6). It is seen that nonlinearity increases the real part of flow elasticity (Y1, > 0
for rather small ¢) and decreases the positive imaginary part of elasticity determining the energy income from
the TBL to the wavy surface (Y1; < 0 for Yo; > 0).
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3. Nonlinear Stabilization of Instability. We study the generation of quasi-monochromatic, finite-
amplitude waves on the basis of the Landau evolution equation, which allows one to describe the nonlinear
staue of development of weak instabilities.

Using relations (3) and (8). we present the nonlinear dispersion equation (6) in the following form:

D(Q.a; V) — *[K (R @) + aqV? Y (Q. c: V)] A2 = 0,
(9)
D = m(Q® — o*8) += (Q fVa)? + iy bo — aqV26Yy.

Here © = af is the dimensionless frequency and A = a/d is the dimensionless amplitude of the wave. As in
the linear theory [7], Eq. (9) contains implicitly two dimensionless parameters, Re; = ¢,0* /1y and d/d*.

Theory of Small Supercriticality. Hydroelastic instability appears when the flow velocity V is greater
than the critical value V.. Waves with frequency 2, and wavenumber o, are excited in the flow-coating
system. The calculations of [7] show that the dispersion equation of the linear problem, which is obtained
from (9) for A = ° describes the transition from the TWF to wave divergence with increasing losses in
the coating 7. V+ ,btain the Landau equation within the framework of the asymptotic theory, which is
constructed in terms of the small parameter ¢ = (V - V¢)/V, < 1.

We introduce the dimensionless coordinate r; = x/d and time t; = ¢;t/d, multiply the ught and left
sides of Eq. (9) by w(2y, 1), pass from Q to the spectral operator @ = id/dt;, and introduce N =0-q.
We assume that D(Q,«; V) = D, +iDj in (9) and expand D, and D; in the vicinity of the critical point in
small 6Q ~ ¢ and V — V. ~ . Assuming that 4 = O(c'/?), we seck the solution of the resultant equation in
the form of a series in powers of ¢ with the main part of the form

wiry, t1) = (1/2)@(t) exp (ingry — iQety) + c.c. (10)

From the condition of boundedness of the term of order ¢ in the expansion of w, we obtain the Landau
equation for the complex amplitude @. Using standard transformations. we pass to the Landan equation

for A:

dA .
= =\ - 344,
dty ( ! 3 ) ’ (11)
where the coefficients have the form
- / 7 9 I—— V2 r I e 2 'l. /~
a = Dlia = DioDiv ) - o Bt oV Vin)Dig — 0gV Vi Dig (12)
(Drn) +(D iQ)’ ¢ (Drq)? + (Dig)? ¢

(the primes denote the derivatives with respect to V and €, and the subscript ¢ indicates that the expression
is calculated for o = @, and Q@ = Q).

The nonlinear coefficient A3 in (11) was calculated for different ;. The paratneters of the critical waves
from [7, Fig. 8] were used. The function A3(7;) has a “plateau” for small ;. a small increase for y; ~ 0.5, and
tends monotonically to zero as v; — oo. The calculations show that the nonlinearity of the coating elasticity
K makes a small contribution to A3 as compared to hvdrodynamic nonlinearity. An important result of the
calculations performed is that A3 has a positive value within the entire range of ;. Thus, a mild regime of
excitation is observed within the limits of applicability of the quasi-linear theory both for fast waves (Hutter)
and for slow waves (divergence). A steady generation of a traveling wave with amplitude

A= VN (13)

is established. The theory of small supercriticality is applicable for a small width of the wavenumber-
instability band o — o] < .. The amplitudes of steady waves (13) arc significantly lower than those
actually observed in experiments. To describe more intense waves, we have to reject the expansion in the
small supercritical values of <.

Wave Divergence on a Viscoelastic Coating. Hydrodynamic instability of slow waves is observed on
viscoelastic coatings, which are characterized by high losses: v = 1-100 and vbg = 6-600 [7]. This allows
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us to derive an evolution equation using asymptotic expansions in the small parameter e = 1/(y:bp) < 1, as
was done in [7] for finding the dispersion branches of the linear problem.

We divide the dispersion equation (9) by v:bo, multiply its right and left sides by w(z.#;), and make
the substitution Q — Q. We seek the solution in the form of expansion in the small parameter s with the
main part in the form

w(xy,t)) = (1/2)d(t) exp (iaz)) + c.c. (14)

In this case, the wave propagation is described by a slow change in the complex amplitude @, and the
expansion of the coefficients of the dispersion equation is performed in terms of (Y ~ g. From the condition
of boundedness of the term of order g in the expansion of w, we obtain the evolution equation for the
complex amplitude @(#), from which follows the Landau equation for A4 in the form of (11) but with different
coeflicients:

A= (15()(!If2¥"’2 - aﬁzE?‘,)‘Q o A3 = soa (K + aqV“’Y;,.) . (15)
It is taken into account in (15) that 0Yg, =~ 0' . The expression for the phase velocity of slow waves has
the form -
OCNL = ;\1 + /.\3A2, (16)
where A\, = v(,qu(SYb,—,’Q and Az = soa")qV")YU’ . We note that the proposed system for deriving the
_0 —

evolution equation is applicable for an arbitrary nonlinearity of the TBL response, since in this case the
nonlinearity should be small only because of the use of expansion (2).

From the expression for the coefficient A, it follows that the origin of instability at high losses in the
coating is related to the fact that the absolute value of the real part of flow elasticity is greater than the static
elasticity of the coating. The nonlinear increment of flow elasticity and the nonlinear allowance for coating
elasticity exert a stabilizing effect on this instability since Yy, > 0 (Fig. 3b) and K{ > 0. This instability
is independent of the imaginary part of flow elasticity Y; determining the energy Hux from the TBL to the
wave [8]. The encrgy interpretation of the instability mechanism cannot be applied here. since the main
contribution to the dynamic response of the coating at high losses is made by the dissipative component of
its elasticity [the term —ivlya@ in (3)]. An increase in losses does not lead to disappearance of instability
but only slows down its development. This instability may be characterized as response-resistive [7].

The critical flow velocity is found from the condition Ay = 0 and, in this approximation, it is inde-
pendent of the losses in the coating. Since Y. > 0' (Fig. 3b), a steady wave with amplitude (13) is
established for V > V.. The calculation results for the amplitude of steady waves versus their wavenumber
are plotted in Fig. 4 (d = 0.32 cm, 6* = 0.45 cm, Re, = 350, and ¢ = 1; curves 1-3 correspond to V = 7,
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9, and 11). The calculations show that the main contribution to A, is made by the nonlinear part of TBL
elasticity (the contribution of K is small).

The parameters of the TBL and the coating in Fig. 4 correspond to the estimates of [7] obtained for
test conditions of [6], where the cxcitation of divergent waves was studied. The condition of small slopes
of the surface was fulfilled in [6] for two or three points at the initial section of experimental dependences
of the wave amplitude on the flow velocity. The experimental points 1-3 in Fig. 4 were obtained using the
dependences of the wavelength and its amplitude on the flow velocity. which are given in [6. Figs. 12 and 15]
for a coating with a shear modulus G = 5 N/m?, and correspond to the same values of the dimensionless flow
velocity V for which curves 1-3 were constructed.

As is shown in Fig. 4, the wave amplitudes observed in the experiments are reached for moderately
small supercritical values where the band of instability (which coincides with the excitation band) becomes
wide. A comparison of the theory and experiment allows us to conclude that the experimental points are
located near the maxima of the dependences A.{a). Despite the great width of the excitation band, coherent
waves with a clearly expressed period were observed in experiments. The appearance of these waves may
be explained by the presence of the processes of nonlinear interaction and by the competition of harmonics
growing in the instability band, whose description goes outside the limits of the Landau equation (11). From
the analysis of the data in Fig. 4. it follows that a quasi-harmonic wave whose amplitude is close to maximum
in the instability band “survives” as a result of competition and interaction of harmonics of the wave packet.

For the family of curves 1-3 in Fig. 4, the critical parameters are V, = 5.25 and a, = 2.4 (4, — 0
as V — V). As the flow velocity V increases, the maximum of the increment is shifted toward increasing
o (@max = 2.6, 2.7, and 2.8 for V = 7. 9, and 11, respectively). At the same time. in the experiments of
[6], the critical wavenumber was actually determined as the wavenumber of the observed wave with the least
amplitude (point 1 in Fig. 4). It follows from the data presented that the value of this critical wavenumber is
approximately two times smaller than «, obtained in the linear problem. This circnmstance was also noted
in [7] and could not be explained within the framework of the linear theory. Thus, a comparison of the theory
and experiment allows one to solve the problem of “sampling” the disturbances relative to their wavenumber.

Nonlincar Flutter on a Coating with Small Losses. In the case of small losses in the coating, the effects
of dissipation and nonlinearity may be taken into account as small perturbations. The corresponding small
parameter £, < 1 for the dispersion equation (9) may be introduced in the form of the ratio of the greatest
, o]\ [A2% and a3qV?|Y1]A? to the value ma®E characteristic of D.

quantity among y,boacy, agV?|6Yy
The necessary condition for the existence of such a small parameter is the smallness of losses in the coating
(vtbp < 1). Assuming that the small parameter < exists, we will not identify it explicitly in (9) for brevity.

We denote the function D for Yy = 0 and v = 0 as Dy. The dispersion equation Dp(Q2, ) = 0
determines two families of waves. of the linear conservative problem:

Q- [qu + /(i + q)amdE — agmf2V?2 ] (17

ma+q
As is shown in [7], for a TBL over a coating with small losses, the least critical velocity of the flow is observed
for the instability of fast waves lying on the branch Q;(a).

To obtain the evolution equation for the TWF, we introduce N =0- Qo. where Qy = Q(«r). In this
case, in (9) we have an expansion in terms of 5Q ~ < in the vicinity of 0= Q5. The solution for w is sought
in the form of an expansion in powers of £, with the main part of the form

wiry,ty) = (1/2)@(t,) exp (ioxy — i%t,) + c.c. (18)
As a result, we obtain the Landau equation for 4 in the form of (11) with the coefficients

A = (aqV38Y0; — 1bo$%)/ Do Az = —0:;’1"2}’117/[)652]9 (19)

=00 =,
where D}, = 2Q(m + q/a) — 2¢fV is the derivative of Dy with respect to Q. The allowance for the

phase velocity of conservative waves has the form of (16). where A = qV3Y,/ DZ)Q[ and A3 = a(K, +
4]

aqV2er)/D(I)Q
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We can show that the sign of wave energy in the conservative problem (17) coincides with the sign of
QoDgg. Since we have Dy, > 0 and Qg > 0 for fast waves, their energy is positive. It follows from Eq. (19)
for A; that destabilization of fast waves is possible for Yp; > 0, i.e., in the presence of an energy flux to
the wave from the mean TBL flow (Miles mechanism). As is shown in {7], the sign of Yy; becomes positive
as the flow velocity increases. Since nonlinearity exerts a stabilizing effect on this instability (A3 > 0 for
Y1; < 0; see Fig. 3a), there arises a steady wave with amplitude (13). Note that the critical flow velocity and
the parameters of fast waves at the threshold of instability, which were found within the framework of the
approximate equation (11) with coefficients (19), are close to those obtained numerically in [7] in the case of
small losses.

The calculation results of the amplitude of steady waves versus their wavenumber are shown in Fig. 5
for d = 0.32 cm, 6" = 0.41 em. Re; = 1113, v = 0.014, and ¢ = 1 (curves 1-3 correspond to V = 2.8, 2.9,
and 3.0). Origination of the TWF on a coating in the TBL was studied experimentally in [1]. In this case, in
comparison of the theory and experiment, because of a stronger scatter of experimental points for the TWF,
we used smoothed dependences of the amplitude and wavelength of the flow velocity, which were given in [1,
Figs.13 and 14] for a coating with G = 74 N/m?. Taking these dependences into account, we constructed an
averaged curve of experimental data (dashed curve in Fig. 5). Points corresponding to V = 2.8, 2.9, and 3.0
were placed on this curve (Fig. 5). The parameter of losses y; was chosen so that the theoretical curve was
closer to the experimental point corresponding to the least value of V.

The curve of experimental data in Fig. 5 is located near the maxima of the theoretical dependences
A.(q). In this case, we have V. = 2.77 and . = 3.6. The wavenumber in the maximum of the increment of
linear instability increases with increasing V' (amax = 3.6, 3.8, and 1.0 for V' = 2.8, 2.9, and 3.0, respectively).
As follows from these data, the shift in termns of the wavenumber between the maximum of the increment
and the experimental point with the least value of A, is insignificant in this case. Therefore, the critical
wavenumber for the TWTF measured in the experiments agrees with the calculation within the framework of
the linear theory [7]. Comparing the theoretical and experimental data for the TWF, we may assumne that,
as in the case of slow waves, the nonlinear processes of competition and interaction of the harmonics of the
packet lead to the “survival” of the harmonic whose amplitude is close to maximum in the instability band.
As is shown in Fig. 5. the calculated amplitude for the TBL increases faster with increasing flow velocity. A
possible reason for this disagreement may be the neglect of damping factors (for example, the effect of the
second harmonic of the flexure).

Note that the amplitudes of steady waves can be found directly from the nonlinear dispersion equation
(9). The numerical solution of Eq. (9) relative to £ and A yields amplitude dependences that are close to
those presented in Figs. 4 and 5. The transition to the Landau equation (11) used above allowed us to seek
the solution of the nonlinear problem taking into account the known results of the linear theory and reveal
the mechanisms of stabilization of hydroelastic instability. In addition, the proposed scheme of derivation
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of the Landau equation for coatings with small and large losses can be further extended to the case of a
multiwave flexure of the surface (excitation of wave packets).

Conclusions. A nonlinear theory of generation of weak quasi-monochromatic waves on the surface
of an elastic coating in a turbulent boundary layer of an incompressible fluid flow is developed in this paper.
The nonlinear dispersion equation is formulated in terms of the complex elasticity of the flow and the coating,
which allows the maximum nse of thc results of solving the linear problem considered in the previous work
of the authors [7]. It is shown that. for small slopes of the surface (ka <« 1), the limitation of hydroelastic
instability is determined by hydrodynamic nonlinearity arising as a result of deformation of the velocity profile
of the mean (over the waviness period) flow in the boundary layer under the action of waviness.

A comparison of the resultant weakly nonlinear theory with known experimental data allows us to
conclude that the waves with the maximum possible amplitude in the instability band for a given flow
velocity “survive.” This offers an explanation to the fact that the critical wavenumber of divergent waves
in the experiment is significantly {approximately by two times) smaller than its theoretical value obtained
within the framework of the linear theory, whereas this difference for the TWF is small.

At the same time, it remains unclear why waves with certain finite amplitudes were observed in
experiments after the loss of stability (in fact, there is no region of very small supercriticality in the graphs).
We also note that, in the case of wave divergence, the approximation of the quasi-monochromatic wave
becomes rapidly invalid as the flow velocity increases, since multiple resonant harmonics of the primary
disturbance fall within the instability band.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 97-01-
00183 and 96-15-96593).
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